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Abstract The experimental design presented here is motivated by a phase II clinical
trial called PePS2, investigating the efficacy and safety of an immunotherapy called
pembrolizumab in a specific subgroup of lung cancer patients. Previous trials have
shown that the probability of efficacy is correlated with particular patient variables.
There are clinical trial designs that investigate co-primary efficacy and toxicity out-
comes in phase II, but few that incorporate covariates. We present here the approach
we developed for PePS2, latterly recognised to be a special case of a more general
method originally presented by Thall, Nguyen and Estey. Their method incorporates
covariates to conduct a dose-finding study but has been scarcely used in trials. Dose-
finding is not required in PePS2 because a candidate dose has been widely tested.
Starting from the most general case, we introduce our method as a novel refinement
appropriate for use in phase II, and evaluate it using a simulation study. Our method
shares information across patient cohorts. Simulations show it is more efficient than
analysing the cohorts separately. Using the design in PePS2 with 60 patients to test
the treatment in six cohorts determined by our baseline covariates, we can expect
error rates typical of those used in phase II trials. However, we demonstrate that care
must be taken when specifying the models for efficacy and toxicity because more
complex models require greater sample sizes for acceptable simulated performance.
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1 Introduction

There is a relative dearth of phase II clinical trial designs that incorporate patient
covariates to assess efficacy and toxicity. We introduce a novel approach here.

Our motivation is a phase II trial called PePS2 that investigates an immunother-
apy in a specific subgroup of lung cancer patients. We developed a Bayesian regres-
sion method that adjusts for predictive patient data available at trial commencement
to investigate co-primary binary outcomes. We latterly learned that our design is a
special case of Thall, Nguyen & Estey (TNE), a family of methods that perform
dose-finding trials guided by efficacy and toxicity outcomes whilst accounting for
baseline patient data [17] . Their design yields personalised dose recommendations.

PePS2 is not a dose-finding trial. Instead, it seeks to estimate the probabilities
of efficacy and toxicity at a dose of pembrolizumab previously demonstrated to be
safe and effective in a closely-related group of patients [9] . To acknowledge its
heritage, we introduce our design as a novel simplification of TNE that removes the
dose-finding components so that it may be used in phase II.

In Section 2, we describe the PePS2 trial and the pertinent clinical data from pre-
vious trials. In Section 3, we review the literature for suitable experimental designs.
We describe our design in detail in Section 4 and evaluate it with a simulation study
in Section 5. Finally, in Section 6, we describe future plans for this work.

2 The Clinical Trial Scenario

PePS2 is a phase II trial of pembrolizumab in non-small-cell lung cancer (NSCLC)
patients with Eastern Cooperative Oncology Group performance status 2 (PS2).
NSCLC is a common sub-type of lung cancer. Patients with PS2 are ambulatory
and capable of self-care but typically too ill to work. Critically, it is doubtful that a
PS2 patient could tolerate the toxic side effects of chemotherapy.

The primary objective of the trial is to learn if pembrolizumab is associated with
sufficient disease control and tolerability to justify use in PS2 patients. The joint pri-
mary outcomes are (i) toxicity, defined as the occurrence of a treatment-related dose
delay or treatment discontinuation due to adverse event related to pembrolizumab;
and (ii) efficacy, defined as the occurrence of stable disease, partial response (PR)
or complete response (CR), without prior progressive disease, at or after the second
post-baseline disease assessment by version 1.1 of the Response Evaluation Criteria
In Solid Tumors [8] . The second assessment is scheduled to occur at week 18.

Pembrolizumab inhibits the programmed cell death 1 (PD-1) receptor via the
programmed death-ligand 1 (PD-L1) protein. It has been shown to be active and
tolerable in patients with better performance status [9] . Overall, 19.4% of patients
had an objective response (PR or CR) and 9.5% experienced a major adverse event,
defined as an event of at least grade 3 by the Common Terminology Criteria for
Adverse Events, v4.0. These statistics compare favourably to those typically seen in
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advanced NSCLC patients under chemotherapy [1, 13] . We foresee no reason why
they should be materially different in PS2 patients.

Table 1 Objective response rates for the validation sample (n = 204) in [9] .

PD-L1 Group Criteria Objective Response %, (95% CI)
Low PD-L1 score < 1% 10.7 (2.3, 28.2)

Medium 1% ≥ PD-L1 score < 50% 16.5 (9.9, 25.1)
High PD-L1 score ≥ 50% 45.2 (33.5, 57.3)

Garon et al. introduce the PD-L1 proportion score biomarker, defined as the per-
centage of neoplastic cells with staining for membranous PD-L1[9] . Efficacy out-
comes for the 204 patients in their validation group, summarised by PD-L1 score,
are shown in Table 1. Objective responses are observed in all cohorts and the rate
increases with PD-L1. Based on this information, we expect PD-L1 to be predictive
of response in our PS2 population.

Furthermore, 24.8% of patients who had received no previous anti-cancer ther-
apy (treatment-naive, TN) achieved a response, compared to 18.0% in the group that
had been previously treated (PT) [9] . This represents a potentially small but impor-
tant effect that should be considered when testing the treatment. We propose to
investigate pembrolizumab by jointly stratifying by the three Garon PD-L1 groups,
and PT and TN statuses. Each patient will belong to exactly one of six cohorts, as
demonstrated in Table 2.

Cohort Previous treatment status PD-L1 category xi = (x1i,x2i,x3i)
1 TN Low (0,1,0)
2 TN Medium (0,0,1)
3 TN High (0,0,0)
4 PT Low (1,1,0)
5 PT Medium (1,0,1)
6 PT High (1,0,0)

Table 2 Cohorts used in the PePS2 trial. xi shows the predictive variable vector for patient i.

In phase II, there is strong motivation to deliver findings quickly to inform the
next study phase. Recruitment of approximately 60 PS2 patients within one year
would be feasible but accrual materially higher would be unlikely. Given the relative
dearth of treatment alternatives, we seek to offer the trial to all PS2 patients and not
stratify accrual. Pembrolizumab has not been investigated in PS2 patients so the
clinical scenario requires a trial design that tests efficacy and toxicity. Given the
evidence that PD-L1 and pretreatedness are associated with response, it is highly
desirable to use a trial design that incorporates this predictive information. The next
section describes our search for a clinical trial design to achieve these objectives.
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3 Review of Available Trial Designs

We sought a clinical trial design that uses covariates to study co-primary binary
outcomes. The well-known phase II design by Bryant and Day (BD) takes thresh-
old rates of efficacy and toxicity and returns the number of events to approve the
treatment [4] . For given levels of significance and power, the thresholds identify
the optimal trial of the competing outcomes. The design does not use covariates,
assuming the population to be homogeneous. Parallel BD designs in our six co-
horts would require a prohibitively large total sample size. Other phase II sequential
designs with multiple outcomes [3, 6, 7, 11, 14, 15] generally focus on providing
stopping rules rather than incorporating predictive information.

Several phase I dose-finding designs [2, 16, 19] use co-primary outcomes. These
could potentially be adapted to our purpose, although they generally do not use co-
variates. A notable exception is TNE, an extension of EffTox [16] that adds patient
covariates to analyse co-primary efficacy and toxicity at different doses. The objec-
tive of their Bayesian design is to recommend a personal dose of an experimental
agent, after adjusting for baseline data. The design was used in a dose-finding study
of PR104 in relapsed or refractory acute myeloid or lymphoblastic leukaemia [12] .
We found no other examples of its use, and no suggestion that it had been adapted
for the non-dose-finding context. Our proposed design can be considered as a sim-
plification of TNE for use in phase II.

4 Assessing Efficacy and Toxicity and Adjusting for Covariates

In this section, we describe the statistical design used in PePS2, with the general
TNE model as the starting point. We call this design P2TNE, for Phase II Thall,
Nguyen & Estey. TNE present marginal probability models for an experimental
treatment:

logitπk(τ,x,y,θ) = fk(τ,αk)+β kx+ τγky , (1)

where k = E,T denote efficacy and toxicity respectively. τ is the given dose appro-
priately normalised; x and y are vectors of covariates, with y interacting with dose; θ

is a pooled vector of all parameters to be estimated; fk(τ,αk) characterise the dose
effects; and β k and γk are vectors of covariate effects and dose-covariate interac-
tions. TNE also introduce similar models for the events under historical treatments
by which informative data on dose and covariate effects can be incorporated.

The authors consider joint models for associating events. They present an exam-
ple using the Gumbel model, as used in [16] :

πa,b(πE ,πT ,ψ) = (πE)
a(1−πE)

1−a(πT )
b(1−πT )

1−b

+(−1)a+b(πE)(1−πE)(πT )(1−πT )
eψ −1
eψ +1

, (2)



A Phase II Trial Design for Efficacy and Toxicity Outcomes with Baseline Covariates 5

where a and b equal 1 when efficacy and toxicity occur in a given patient respec-
tively, else 0. For ψ ∈ R, the fractional term takes values on (-1, 1), reflecting the
correlation between the events. We refer to ψ as the association parameter.

To derive P2TNE, we remove all terms related to τ in (1) to reflect that dose
is fixed. Furthermore in PePS2, we consider only the historic outcomes of the
same single experimental treatment under a closely-related cohort of patients with
NSCLC.

Let xi =(x1i,x2i,x3i) denote the covariate data and ai,bi the occurrence of efficacy
and toxicity in patient i. For trial data:

X = {(x1,a1,b1), ...,(xn,an,bn)} ,

the aggregate likelihood function is

L (X ,θ) =
n

∏
i=1

πai,bi(πE(xi,θ),πT (xi,θ),ψ) .

Let θ have prior distribution f (θ). For patients with covariate data x, the posterior
expectation of the probability of efficacy under treatment is

E(πE(x,θ)|X) =

∫
πE(x,θ) f (θ)L (X ,θ)dθ∫

f (θ)L (X ,θ)dθ
,

and the posterior probability that the rate of efficacy exceeds some threshold π∗E is

Pr(πE(x,θ)> π
∗
E |X) =

∫
I(πE(x,θ)> π∗E) f (θ)L (X ,θ)dθ∫

f (θ)L (X ,θ)dθ
.

The treatment is acceptable in patients with covariate vector x if

Pr(πE(x,θ)> π
∗
E |X)> pE

Pr(πT (x,θ)< π
∗
T |X)> pT ,

(3)

where π∗E , pE , π∗T and pT are chosen by the trialists. The clinical investigator chose
the values π∗E = 0.1 and π∗T = 0.3 to reflect that efficacy less than 10% or toxic-
ity exceeding 30% would render the treatment unattractive for further study in this
patient group. We derived pE = 0.7 and pT = 0.9 by simulation using the method
described below. Our chosen models for marginal efficacy and toxicity are:

logitπE(xi,θ) = α +βx1i + γx2i +ζ x3i

logitπT (xi,θ) = λ ,
(4)

with the events associated by (2). Our efficacy model assumes that the event log-
odds for PT patients in the PD-L1 categories are a common linear shift of those
in TN patients, an assumption we call piecewise parallelism, broadly supported by
[9]. The rate of toxicity is assumed uniform across groups, supported by the data in
[9, 10] . We analyse more complex models that relax each of these assumptions.
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5 Simulation Study

Choice of priors is contentious in clinical trials. We simulated performance under
diffuse, regularising, and informative priors. Our diffuse priors are normal with µ =
0 and σ = 10. Regularising priors expect event rates close to 20% in all cohorts,
put the majority of prior predictive mass in the left tail, but admit that event rates
can be high. Informative priors expect event rates similar to those observed in [9],
modestly penalised to reflect PS2 patient prognosis.

Table 3 shows operating characteristics using 60 patients. We tuned pE and pT by
simulation in key benchmark scenarios, requiring that the design approve in all co-
horts: (i) with at least 80% probability in scenario 1; and (ii) with no more than 5%
probability in scenario 2. These probabilities reflect typical values for frequentist
power and significance in phase II trials. Starting with pT = pT = 0.7, we saw that
the designs accepted too often in scenario 2. With patients potentially near end-of-
life, we chose to adjust operating performance by increasing certainty when eval-
uating toxicity; pT = 0.8 was still too permissive but pT = 0.9 achieved our goal
under the regularising and diffuse priors, and pT = 0.95 under informative priors.
Scenarios 4-6 show that performance is good in settings inspired by the reported
data [9, 10] . Compared to diffuse priors, the regularising priors improve approval
probability without pre-empting covariate effects like the informative priors.

Table 3 also shows performance of beta-binomial conjugate models applied to
cohorts individually with Beta(1,1) priors, accepting if (3) is satisfied with pE = 0.7
& pT = 0.9. By incorporating baseline covariates, P2TNE considerably improves
performance without erroneously inflating acceptance in scenarios 2 and 5.

The diffuse priors generate prior predictive distributions with most of the prob-
ability mass polarised close to events rates of 0 and 1, inconsistent with our beliefs
and the published data. Coverage of posterior credible intervals was lowest and em-
pirical standard error of estimates highest under the diffuse priors (data not shown).

Our model choices (4) imply fairly strong assumptions. We analyse model em-
bellishments to infer the cost of greater model complexity. We relax the piecewise
parallel assumption by adding interactions terms to the efficacy model. Under dif-
fuse priors, approval probabilities and coverages decrease in our scenarios. An extra
20-40 patients are required to match performance of the simpler model under diffuse
priors. To correctly improve the rejection probability in cohort 4 under scenarios 4-
6, this model requires several times the initial sample size, an unjustifiable increase.

We relaxed the assumption that toxicity is uniform over groups by mirroring in
the toxicity model the efficacy covariate terms in (4), yielding a model with nine
parameters including ψ . The extra model complexity reduces approval probabilities
and coverage. Poor coverage is a particular problem in the toxicity model in scenar-
ios where the event rate is 10%. For instance, the four-parameter model performs
very poorly in scenarios 1 and 3, particularly in the smallest cohorts. Performance
is better in scenario 2 where the true rate is 30%. This is notable because the pub-
lished data [9, 10] suggest low toxicity. In scenarios not shown in Table 3, this model
successfully identifies differential toxicity associated with covariates but requires a
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Sc Co PrEff PrTox OddsR N Eff Tox Inf Reg Diff BetaBin
1 1 0.300 0.1 1.0 9.3 2.8 0.9 0.883 0.896 0.878 0.540

2 0.300 0.1 1.0 13.1 3.9 1.3 0.906 0.920 0.905 0.658
3 0.300 0.1 1.0 7.5 2.3 0.8 0.980 0.909 0.816 0.473
4 0.300 0.1 1.0 12.5 3.7 1.2 0.875 0.912 0.896 0.635
5 0.300 0.1 1.0 10.8 3.2 1.1 0.873 0.909 0.890 0.590
6 0.300 0.1 1.0 6.8 2.0 0.7 0.959 0.893 0.819 0.459

2 1 0.100 0.3 1.0 9.3 0.9 2.8 0.012 0.025 0.019 0.035
2 0.100 0.3 1.0 13.1 1.3 3.9 0.013 0.028 0.023 0.032
3 0.100 0.3 1.0 7.5 0.8 2.3 0.038 0.029 0.021 0.034
4 0.100 0.3 1.0 12.5 1.2 3.7 0.009 0.024 0.021 0.034
5 0.100 0.3 1.0 10.8 1.1 3.2 0.009 0.024 0.022 0.032
6 0.100 0.3 1.0 6.8 0.7 2.0 0.027 0.025 0.019 0.041

3 1 0.300 0.1 0.2 9.3 2.8 0.9 0.884 0.897 0.879 0.562
2 0.300 0.1 0.2 13.1 3.9 1.3 0.906 0.920 0.904 0.667
3 0.300 0.1 0.2 7.5 2.3 0.8 0.981 0.909 0.818 0.494
4 0.300 0.1 0.2 12.5 3.7 1.2 0.877 0.913 0.897 0.652
5 0.300 0.1 0.2 10.8 3.2 1.1 0.874 0.908 0.889 0.605
6 0.300 0.1 0.2 6.8 2.0 0.7 0.960 0.893 0.820 0.478

4 1 0.167 0.1 1.0 9.3 1.5 0.9 0.408 0.451 0.398 0.293
2 0.192 0.1 1.0 13.1 2.5 1.3 0.651 0.690 0.633 0.432
3 0.500 0.1 1.0 7.5 3.8 0.8 0.993 0.981 0.974 0.622
4 0.091 0.1 1.0 12.5 1.1 1.3 0.208 0.277 0.215 0.131
5 0.156 0.1 1.0 10.8 1.7 1.1 0.405 0.493 0.419 0.298
6 0.439 0.1 1.0 6.8 3.0 0.7 0.961 0.930 0.931 0.581

5 1 0.167 0.3 1.0 9.3 1.5 2.8 0.027 0.063 0.039 0.071
2 0.192 0.3 1.0 13.1 2.5 3.9 0.046 0.099 0.066 0.084
3 0.500 0.3 1.0 7.5 3.8 2.3 0.071 0.141 0.102 0.159
4 0.091 0.3 1.0 12.5 1.1 3.7 0.014 0.037 0.021 0.028
5 0.156 0.3 1.0 10.8 1.7 3.2 0.030 0.071 0.045 0.065
6 0.439 0.3 1.0 6.8 3.0 2.0 0.070 0.135 0.099 0.163

6 1 0.167 0.1 0.2 9.3 1.5 0.9 0.408 0.451 0.396 0.308
2 0.192 0.1 0.2 13.1 2.5 1.3 0.651 0.689 0.633 0.447
3 0.500 0.1 0.2 7.5 3.8 0.8 0.993 0.981 0.974 0.627
4 0.091 0.1 0.2 12.5 1.1 1.3 0.208 0.278 0.212 0.139
5 0.156 0.1 0.2 10.8 1.7 1.1 0.402 0.493 0.415 0.313
6 0.439 0.1 0.2 6.8 3.0 0.7 0.962 0.929 0.930 0.589

Table 3 Summary of simulated trials. Sc is scenario number; Co is cohort number. Patient co-
horts are defined in Table 2. PrEff and PrTox are true probabilities of efficacy and toxicity. OddsR
shows ratio of odds of efficacy in patients that experience toxicity to those that do not. OddsR=1
reflects no association; OddsR<1 implies efficacy is less likely when toxicity occurs. N shows
mean number of patients; Eff and Tox the mean number of events. Inf is the approval probability
under informative priors; Reg and Diff are the same under regularising and diffuse priors. BetaBin
shows approval probability using cohort-specific beta-binomial models. 10,000 iterations used.

sample size exceeding 100 to do so with high probability. Weighing the extra de-
mand in resource against the likely benefit, we prefer the simpler model.

Lastly, scenarios 3 and 6 show that model performance is seemingly unaffected
by strong association in efficacy and toxicity events. We investigated a model vari-
ant that assumes independence by setting ψ = 0 in (2). Approval probability and
precision were practically unchanged. This is understandable because ψ is absent
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from (4) and therefore does not affect (3). ψ is useful, however, in conditional in-
ference. For example, the predicted distribution of unknown efficacy conditioned
on observed toxicity is shifted lower by ψ given negative association prevailing in
the collected trial data, and vice-versa. Given its useful role with no performance
penalty, we retain ψ .

6 Further Work and Availability of Materials

Statisticians know that dichotomising continuous variables reduces information. We
have used in this research the PD-L1 categorisation previously introduced and vali-
dated in NSCLC [9] . In ongoing work, we use the underlying continuous score in
place of the categorisation. In this setting, further care must be taken when specify-
ing the model form and the parameter priors. For instance, we expect overwhelm-
ingly that the gradient term describing the sensitivity of efficacy with respect to
PD-L1 score will be positive, so that higher scores are more likely to yield efficacy
events. However, it is debatable whether our priors or model form should reflect
that we expect greater or lesser efficacy-PD-L1 sensitivity in treatment naive or pre-
treated patients. A hierarchical approach has some merit, where PD-L1 gradients are
interpreted as draws from some common distribution. This would allow heterogene-
ity to manifest in subgroups whilst discouraging over-fitting via shrinkage-based
regularisation. Missing data is a perennial challenge in clinical trials. A hierarchi-
cal approach has the further benefit of pragmatically treating patients with unknown
pretreatment status as a third cohort. Intuitively, we could interpret this group as
behaving like an unknown mixture of pretreated and treatment-naive patients.

One of the focuses of this research has been the consideration of different models
that could eventually be fit to the trial data. We approached the problem as if one
candidate model had to be identified in advance in the analysis plan. An alternative
is to specify a suite of models and then combine their inferences. For instance, in
Bayesian model averaging, the response distributions generated by the candidate
models are weighted together by their marginal posterior probabilities. In contrast,
methods have been introduced that stack posterior predictive distributions, using
the leave-one-out (LOO) predictor for each model and each data-point, deriving
model weights that minimise the LOO mean squared error [18] . A method like this
could allow us to combine models with markedly different features like simple and
complex specifications for the toxicity sub-model in a data-oriented manner.

Models used in this research were implemented in Stan [5] and all materials are
available on GitHub at https://github.com/brockk/bebop
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